
Rozwiązywanie równań to podstawowa umiejętność w matematyce. Chodzi o znalezienie wartości niewiadomej (zazwyczaj oznaczanej jako x), która sprawia, że równanie jest prawdziwe. Równanie, które mamy rozwiązać to: 3 * x + 5 = 9.
Zajmiemy się tym krok po kroku:
Krok 1: Izolacja terminu z niewiadomą. Chcemy, aby po jednej stronie równania był tylko termin zawierający x (w tym przypadku 3 * x). Aby to osiągnąć, odejmujemy 5 od obu stron równania:
3 * x + 5 - 5 = 9 - 5
Co upraszcza się do:

3 * x = 4
Krok 2: Wyliczenie niewiadomej. Teraz chcemy znaleźć wartość samego x. Ponieważ x jest pomnożony przez 3, musimy podzielić obie strony równania przez 3:
(3 * x) / 3 = 4 / 3

Co daje nam:
x = 4/3

Zatem rozwiązaniem równania 3 * x + 5 = 9 jest x = 4/3. Możemy zapisać to również jako ułamek mieszany: 1 1/3.
Podsumowanie: Aby rozwiązać równanie, najpierw izolujemy termin z niewiadomą, a następnie wykonujemy operacje (dodawanie, odejmowanie, mnożenie, dzielenie) po obu stronach równania, aż do uzyskania wartości x.
Sprawdzenie: Możemy sprawdzić, czy wynik jest poprawny, podstawiając x = 4/3 do oryginalnego równania: 3 * (4/3) + 5 = 4 + 5 = 9. Zatem rozwiązanie jest poprawne.